Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 29(1): 72-85, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37633803

RESUMO

In diploid organisms, haploinsufficiency can be defined as the requirement for more than one fully functional copy of a gene. In contrast to most genes, whose loss-of-function alleles are recessive, loss-of-function alleles of haploinsufficient genes are dominant. However, forward and reverse genetic screens are biased toward obtaining recessive, loss-of-function mutations, and therefore, dominant mutations of all types are underrepresented in mutant collections. Despite this underrepresentation, haploinsufficient loci have intriguing implications for studies of genome evolution, gene dosage, stability of protein complexes, genetic redundancy, and gene expression. Here we review examples of haploinsufficiency in flowering plants and describe the underlying molecular mechanisms and evolutionary forces driving haploinsufficiency. Finally, we discuss the masking of haploinsufficiency by genetic redundancy, a widespread phenomenon among angiosperms.


Assuntos
Haploinsuficiência , Magnoliopsida , Haploinsuficiência/genética , Magnoliopsida/genética , Dosagem de Genes , Mutação
2.
Front Plant Sci ; 14: 1239093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034561

RESUMO

The paralogous genes INCURVATA11 (ICU11) and CUPULIFORMIS2 (CP2) encode components of the epigenetic machinery in Arabidopsis and belong to the 2-oxoglutarate and Fe (II)-dependent dioxygenase superfamily. We previously inferred unequal functional redundancy between ICU11 and CP2 from a study of the synergistic phenotypes of the double mutant and sesquimutant combinations of icu11 and cp2 mutations, although they represented mixed genetic backgrounds. To avoid potential confounding effects arising from different genetic backgrounds, we generated the icu11-5 and icu11-6 mutants via CRISPR/Cas genome editing in the Col-0 background and crossed them to cp2 mutants in Col-0. The resulting mutants exhibited a postembryonic-lethal phenotype reminiscent of strong embryonic flower (emf) mutants. Double mutants involving icu11-5 and mutations affecting epigenetic machinery components displayed synergistic phenotypes, whereas cp2-3 did not besides icu11-5. Our results confirmed the unequal functional redundancy between ICU11 and CP2 and demonstrated that it is not allele or genetic background specific. An increase in sucrose content in the culture medium partially rescued the post-germinative lethality of icu11 cp2 double mutants and sesquimutants, facilitating the study of their morphological phenotypes throughout their life cycle, which include floral organ homeotic transformations. We thus established that the ICU11-CP2 module is required for proper flower organ identity.

3.
Plant Sci ; 335: 111819, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562732

RESUMO

Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4-0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4-0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.


Assuntos
Arabidopsis , Ribonucleotídeo Redutases , Humanos , Proteína 1 com Domínio SAM e Domínio HD/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fenótipo
4.
Front Plant Sci ; 14: 1042913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778692

RESUMO

Mapping-by-sequencing combines Next Generation Sequencing (NGS) with classical genetic mapping by linkage analysis to establish gene-to-phenotype relationships. Although numerous tools have been developed to analyze NGS datasets, only a few are available for mapping-by-sequencing. One such tool is Easymap, a versatile, easy-to-use package that performs automated mapping of point mutations and large DNA insertions. Here, we describe Easymap v.2, which also maps small insertion/deletions (InDels), and includes workflows to perform QTL-seq and variant density mapping analyses. Each mapping workflow can accommodate different experimental designs, including outcrossing and backcrossing, F2, M2, and M3 mapping populations, chemically induced mutation and natural variant mapping, input files containing single-end or paired-end reads of genomic or complementary DNA sequences, and alternative control sample files in FASTQ and VCF formats. Easymap v.2 can also be used as a variant analyzer in the absence of a mapping algorithm and includes a multi-threading option.

5.
Trends Plant Sci ; 28(1): 54-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180378

RESUMO

The interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization. Here, we discuss evidence supporting the hypothesis that cytokinins play a role in simple leaf margin morphogenesis via crosstalk with auxin, as occurs in other plant developmental events. Indeed, mutant or transgenic arabidopsis plants defective in cytokinin biosynthesis or signaling, or with increased cytokinin degradation have leaf margins less serrated than the wild type.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
6.
Front Plant Sci ; 13: 1009895, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325553

RESUMO

ATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, Arabidopsis thaliana has two ABCE paralogs, of which ABCE2 seems to conserve the ancestral function. We isolated apiculata7-1 (api7-1), the first viable, hypomorphic allele of ABCE2, which has a pleiotropic morphological phenotype reminiscent of mutations affecting ribosome biogenesis factors and ribosomal proteins. We also studied api7-2, a null, recessive lethal allele of ABCE2. Co-immunoprecipitation experiments showed that ABCE2 physically interacts with components of the translation machinery. An RNA-seq study of the api7-1 mutant showed increased responses to iron and sulfur starvation. We also found increased transcript levels of genes related to auxin signaling and metabolism. Our results support for the first time a conserved role for ABCE proteins in translation in plants, as previously shown for the animal, fungal, and archaeal lineages. In Arabidopsis, the ABCE2 protein seems important for general growth and vascular development, likely due to an indirect effect through auxin metabolism.

7.
Methods Mol Biol ; 2484: 343-361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461462

RESUMO

Random mutagenesis followed by screening for phenotypes of interest is a widely used strategy for genetic dissection of biological pathways; however, identifying the causal gene traditionally required time-consuming mapping approaches based on iterative linkage analysis. Mapping-by-sequencing accelerates this process, efficiently linking the phenotype of a mutant to a narrow candidate genomic region, using next-generation sequencing (NGS) data from a mapping population segregating for the mutant phenotype. To enable researchers at any bioinformatics skill level to conduct mapping-by-sequencing, we developed the Easymap mapping software. In this protocol we break down the steps involved in mapping-by-sequencing. First, we describe different ways of obtaining a mapping population and the steps used to generate NGS data. Next, we show how to analyze the NGS data using Easymap and how to obtain a list of candidate mutations, along with comprehensive information for assessing the potential causality of each candidate. Thus, this protocol enables the user to conduct mapping-by-sequencing using Easymap, facilitating the identification of causal loci for a mutant phenotype of interest.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico/métodos , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutagênese Insercional , Mutação , Fenótipo
8.
Front Microbiol ; 12: 745576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671333

RESUMO

The N 6-methyladenosine (m6A) pathway has been widely described as a viral regulatory mechanism in animals. We previously reported that the capsid protein (CP) of alfalfa mosaic virus (AMV) interacts with the Arabidopsis m6A demethylase ALKBH9B regulating m6A abundance on viral RNAs (vRNAs) and systemic invasion of floral stems. Here, we analyze the involvement of other ALKBH9 proteins in AMV infection and we carry out a detailed evaluation of the infection restraint observed in alkbh9b mutant plants. Thus, via viral titer quantification experiments and in situ hybridization assays, we define the viral cycle steps that are altered by the absence of the m6A demethylase ALKBH9B in Arabidopsis. We found that ALKBH9A and ALKBH9C do not regulate the AMV cycle, so ALKBH9B activity seems to be highly specific. We also define that not only systemic movement is affected by the absence of the demethylase, but also early stages of viral infection. Moreover, our findings suggest that viral upload into the phloem could be blocked in alkbh9b plants. Overall, our results point to ALKBH9B as a possible new component of phloem transport, at least for AMV, and as a potential target to obtain virus resistance crops.

9.
Front Plant Sci ; 12: 655286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040621

RESUMO

Mapping-by-sequencing strategies combine next-generation sequencing (NGS) with classical linkage analysis, allowing rapid identification of the causal mutations of the phenotypes exhibited by mutants isolated in a genetic screen. Computer programs that analyze NGS data obtained from a mapping population of individuals derived from a mutant of interest to identify a causal mutation are available; however, the installation and usage of such programs requires bioinformatic skills, modifying or combining pieces of existing software, or purchasing licenses. To ease this process, we developed Easymap, an open-source program that simplifies the data analysis workflows from raw NGS reads to candidate mutations. Easymap can perform bulked segregant mapping of point mutations induced by ethyl methanesulfonate (EMS) with DNA-seq or RNA-seq datasets, as well as tagged-sequence mapping for large insertions, such as transposons or T-DNAs. The mapping analyses implemented in Easymap have been validated with experimental and simulated datasets from different plant and animal model species. Easymap was designed to be accessible to all users regardless of their bioinformatics skills by implementing a user-friendly graphical interface, a simple universal installation script, and detailed mapping reports, including informative images and complementary data for assessment of the mapping results. Easymap is available at http://genetics.edu.umh.es/resources/easymap; its Quickstart Installation Guide details the recommended procedure for installation.

11.
Nucleic Acids Res ; 47(21): e140, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31544937

RESUMO

Forward genetic screens have successfully identified many genes and continue to be powerful tools for dissecting biological processes in Arabidopsis and other model species. Next-generation sequencing technologies have revolutionized the time-consuming process of identifying the mutations that cause a phenotype of interest. However, due to the cost of such mapping-by-sequencing experiments, special attention should be paid to experimental design and technical decisions so that the read data allows to map the desired mutation. Here, we simulated different mapping-by-sequencing scenarios. We first evaluated which short-read technology was best suited for analyzing gene-rich genomic regions in Arabidopsis and determined the minimum sequencing depth required to confidently call single nucleotide variants. We also designed ways to discriminate mutagenesis-induced mutations from background Single Nucleotide Polymorphisms in mutants isolated in Arabidopsis non-reference lines. In addition, we simulated bulked segregant mapping populations for identifying point mutations and monitored how the size of the mapping population and the sequencing depth affect mapping precision. Finally, we provide the computational basis of a protocol that we already used to map T-DNA insertions with paired-end Illumina-like reads, using very low sequencing depths and pooling several mutants together; this approach can also be used with single-end reads as well as to map any other insertional mutagen. All these simulations proved useful for designing experiments that allowed us to map several mutations in Arabidopsis.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutagênese Insercional/métodos , Polimorfismo de Nucleotídeo Único/genética , DNA Bacteriano/genética , Genoma de Planta/genética , Mutagênese Sítio-Dirigida/métodos
12.
Front Plant Sci ; 10: 461, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057574

RESUMO

Adventitious roots (ARs) are formed de novo during post-embryonic development from non-root tissues, in processes that are highly dependent on environmental inputs. Whole root excision from young seedlings has been previously used as a model to study adventitious root formation in Arabidopsis thaliana hypocotyls. To identify novel regulators of adventitious root formation, we analyzed adventitious rooting in the hypocotyl after whole root excision in 112 T-DNA homozygous leaf mutants, which were selected based on the dynamic expression profiles of their annotated genes during hormone-induced and wound-induced tissue regeneration. Forty-seven T-DNA homozygous lines that displayed low rooting capacity as regards their wild-type background were dubbed as the less adventitious roots (lars) mutants. We identified eight lines with higher rooting capacity than their wild-type background that we named as the more adventitious roots (mars) mutants. A relatively large number of mutants in ribosomal protein-encoding genes displayed a significant reduction in adventitious root number in the hypocotyl after whole root excision. In addition, gene products related to gibberellin (GA) biosynthesis and signaling, auxin homeostasis, and xylem differentiation were confirmed to participate in adventitious root formation. Nearly all the studied mutants tested displayed similar rooting responses from excised whole leaves, which suggest that their affected genes participate in shared regulatory pathways required for de novo organ formation in different organs.

15.
Plant Cell ; 30(6): 1353-1374, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29848768

RESUMO

In Arabidopsis thaliana, ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing and is a key component in antiviral responses. The polerovirus F-box P0 protein triggers AGO1 degradation as a viral counterdefense. Here, we identified a motif in AGO1 that is required for its interaction with the S phase kinase-associated protein1-cullin 1-F-box protein (SCF) P0 (SCFP0) complex and subsequent degradation. The AGO1 P0 degron is conserved and confers P0-mediated degradation to other AGO proteins. Interestingly, the degron motif is localized in the DUF1785 domain of AGO1, in which a single point mutation (ago1-57, obtained by forward genetic screening) compromises recognition by SCFP0 Recapitulating formation of the RNA-induced silencing complex in a cell-free system revealed that this mutation impairs RNA unwinding, leading to stalled forms of AGO1 still bound to double-stranded RNAs. In vivo, the DUF1785 is required for unwinding perfectly matched siRNA duplexes, but is mostly dispensable for unwinding imperfectly matched miRNA duplexes. Consequently, its mutation nearly abolishes phased siRNA production and sense transgene posttranscriptional gene silencing. Overall, our work sheds new light on the mode of AGO1 recognition by P0 and the in vivo function of DUF1785 in RNA silencing.


Assuntos
Arabidopsis/metabolismo , RNA de Cadeia Dupla/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Mutação Puntual/genética , Interferência de RNA
16.
Plant Cell ; 30(7): 1596-1616, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915151

RESUMO

All critical developmental and physiological events in a plant's life cycle depend on the proper activation and repression of specific gene sets, and this often involves epigenetic mechanisms. Some Arabidopsis thaliana mutants with disorders of the epigenetic machinery exhibit pleiotropic defects, including incurved leaves and early flowering, due to the ectopic and heterochronic derepression of developmental regulators. Here, we studied one such mutant class, the incurvata11 (icu11) loss-of-function mutants. We have identified ICU11 as the founding member of a small gene family that we have named CUPULIFORMIS (CP). This family is part of the 2-oxoglutarate/Fe(II)-dependent dioxygenase superfamily. ICU11 and its closest paralog, CP2, have unequally redundant functions: although cp2 mutants are phenotypically wild type, icu11 cp2 double mutants skip vegetative development and flower upon germination. This phenotype is reminiscent of loss-of-function mutants of the Polycomb-group genes EMBRYONIC FLOWER1 (EMF1) and EMF2 Double mutants harboring icu11 alleles and loss-of-function alleles of genes encoding components of the epigenetic machinery exhibit synergistic, severe phenotypes, and some are similar to those of emf mutants. Hundreds of genes are misexpressed in icu11 plants, including SEPALLATA3 (SEP3), and derepression of SEP3 causes the leaf phenotype of icu11 ICU11 and CP2 are nucleoplasmic proteins that act as epigenetic repressors through an unknown mechanism involving histone modification, but not DNA methylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Epigênese Genética/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
17.
J Exp Bot ; 69(10): 2569-2579, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29514302

RESUMO

Auxin (indole-3-acetic acid, IAA) plays fundamental roles as a signalling molecule during numerous plant growth and development processes. The formation of local auxin gradients and auxin maxima/minima, which is very important for these processes, is regulated by auxin metabolism (biosynthesis, degradation, and conjugation) as well as transport. When studying auxin metabolism pathways it is crucial to combine data obtained from genetic investigations with the identification and quantification of individual metabolites. Thus, to facilitate efforts to elucidate auxin metabolism and its roles in plants, we have developed a high-throughput method for simultaneously quantifying IAA and its key metabolites in minute samples (<10 mg FW) of Arabidopsis thaliana tissues by in-tip micro solid-phase extraction and fast LC-tandem MS. As a proof of concept, we applied the method to a collection of Arabidopsis mutant lines and identified lines with altered IAA metabolite profiles using multivariate data analysis. Finally, we explored the correlation between IAA metabolite profiles and IAA-related phenotypes. The developed rapid analysis of large numbers of samples (>100 samples d-1) is a valuable tool to screen for novel regulators of auxin metabolism and homeostasis among large collections of genotypes.


Assuntos
Arabidopsis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ácidos Indolacéticos/metabolismo , Mutação , Proteínas de Plantas/análise , Arabidopsis/metabolismo , Cromatografia Líquida , Análise Multivariada , Extração em Fase Sólida , Espectrometria de Massas em Tandem
18.
Plant Sci ; 266: 117-129, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29241561

RESUMO

To enhance our understanding of the roles of mitochondrial transcription termination factors (mTERFs) in plants, we have taken a reverse genetic approach in Arabidopsis thaliana. One of the mutants isolated carried a novel allele of the mTERF6 gene, which we named mterf6-5. mTERF6 is a chloroplast and mitochondrial localised protein required for the maturation of chloroplast isoleucine tRNA. The mterf6-5 plants are pale and exhibit markedly reduced growth, and altered leaf and chloroplast development. Our qRT-PCR analyses revealed mis-expression of several plastid, mitochondrial and nuclear genes in mterf6-5 plants. Synergistic phenotypes were observed in double mutant combinations of mterf6-5 with alleles of other mTERF genes as well as with scabra3-2, affected in the plastid RpoTp RNA polymerase; these observations suggest a functional relationship between mTERF6, other mTERFs and SCA3. The mterf6-5 mutation also enhanced the leaf dorsoventral polarity defects of the asymmetric leaves1-1 (as1-1) mutant, which resulted in radial leaves. This interaction seemed specific of the impaired mTERF6 function because mutations in the mTERF genes MDA1 or TWR-1/mTERF9 did not result in radialised leaves. Furthermore, the mterf6-5 mutation dramatically increased the leaf phenotype of as2-1 and caused lethality early in vegetative development. Our results uncover a new role for mTERF6 in leaf patterning and highlight the importance of mTERFs in plant development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Mitocondriais/genética , Folhas de Planta/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Mitocondriais/metabolismo , Fenótipo , Folhas de Planta/crescimento & desenvolvimento
19.
New Phytol ; 217(3): 1307-1321, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29139551

RESUMO

Most plant leaves exhibit bilateral symmetry, which has been hypothesized as an inevitable consequence of the existence of the proximodistal and dorsoventral axes. No gene has been described that affects leaf bilateral symmetry but not dorsoventrality in Arabidopsis thaliana. We screened for viable insertional mutations that affect leaf morphology, and out of more than 700 mutants found only one, desigual1-1 (deal1-1), that exhibited bilateral symmetry breaking but no obvious defects in dorsoventrality. We found that deal1-1 is an allele of VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC). Several overlapping regulatory pathways establish the interspersed lobes and indentations along the margin of Arabidopsis thaliana leaves. These pathways involve feedback loops of auxin, the PIN-FORMED1 (PIN1) auxin efflux carrier, and the CUP-SHAPED COTYLEDON2 (CUC2) transcriptional regulator. Early vcc (deal1) leaf primordia fail to acquire bilateral symmetry and instead form ectopic lobes and sinuses. The vcc leaves show aberrant recruitment of marginal cells expressing properly polarized PIN1, resulting in misplaced auxin maxima. Normal PIN1 polarization requires CUC2 expression and CUC2 genetically interacts with VCC; VCC also affects CUC2 expression. VCC has a domain of unknown function, DUF1218, and localizes to the endoplasmic reticulum membrane. VCC acts partially redundantly with its two closest paralogs, DEAL2 and DEAL3, in early leaf margin patterning and is required for bilateral symmetry, but its loss of function does not visibly affect dorsoventrality.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/genética , Padronização Corporal/genética , Genes de Plantas , Família Multigênica , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proliferação de Células , Retículo Endoplasmático/metabolismo , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Mutação/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frações Subcelulares/metabolismo
20.
Plant Physiol ; 176(2): 1709-1727, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233938

RESUMO

Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis (Arabidopsis thaliana). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved.


Assuntos
Arabidopsis/genética , Reprogramação Celular , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...